an unusual reaction of 3-methoxycarbonyl- Δ^2 -pyrazoline with lead tetraacetate

A.A. Akrem, E.I. Kvasyuk and I.A. Mikhailopulo¹
Department of Bioorganic Chemistry, Institute of Physical Organic Chemistry,
Byelorussian SSR Academy of Sciences, Minsk, USSR.

(Received in UK 21 May 1973; accepted for publication 1 June 1973)

It is well known that pyrazolines acted on by lead tetrascetate are converted into 3-acetoxy- Δ^1 -pyrazolines, cyclopropane derivatives or pyrazoles, depending on the structure of the initial compounds^{2,3}. The interaction of methyl ester Δ^2 -pyrazoline-3-carboxylic acid⁴ (1) with Pb)OAc)₄ by boiling of the reagents (in 1:1 mol proportion) for 2.5 hours in benzeme resulted in the disappearance of initial 1 and thin layer chromatography data⁵ revealed only two new products. Separation by column chromatography on silicic acid and elution with a mixture of hexane-ether, yielded 3-methoxycarbonyl-1-(1-methoxycarbonyl-1'-cyclopropyl)pyrazole⁶ (3, m.p. 104-106°C from ether, 70% yield) and 3-methoxycarbonyl-1-[3:(5')-methoxycarbonyl-1'-pyrazoly] Δ^2 -pyrazoline (4, m.p. 114-115°C from ether, 14% yield). The spectral analysis data⁷ of 1, 2, 4 and also of 3(5)-methoxycarbonyl pyrazole⁸(5) and N₁-acetyl-3-methoxycarbonyl- Δ^2 -pyrazoline⁹(6), studied as model compounds, are shown in Table 1.

Consideration of the data permits only the following structure interpretation of $\underline{3}$: (a) the NMR spectrum displays (i) symmetric $\underline{A_2B_2}$ multiplet with a centre at 1,73, typical of 1,1-disubstituted cyclopropane derivatives $\underline{10,11}$; (ii) doublets of protons at $\underline{C_4}$ and $\underline{C_5}$ of pyrazole ring $\underline{12}$ at 36,76 and 7,51; (iii) signals of two $\underline{CH_3}$ -groups, belonging to $\underline{COOCH_3}$ groupings; (b) there is absorption maximum characteristic of pyrazoles $\underline{13}$ in the UV spectrum; (c) the IR spectrum reveals (i) two carbonyl stretching absorptions; (ii) a weak band of 1515 cm⁻¹ which was previously observed $\underline{14}$ in $\underline{N_1}$ -substituted pyrazoles;

TABLE 1

		Spe	Spectral analysis data	data				
Compound	NMR? (S ppm from TMS)	н	IR^7 (cm ⁻¹ ; g - in CHCl ₂ ; b - in KBr)	n CHCl3;	b - in KBr	~	M	UV ⁷ (nm)
			0=0	S C	H-N	others	$\lambda_{ ext{max}}$	w
	2,83 m centre, C4-2H	ଷା	1710 (shs.	1567	3450		291	10420
-	3,60 m centre, C_5-2H		at 1700 and					
-	3,78 s, cocc <u>u</u> 3		1740)					
	5,90, N-H	വ	1715; 1745	1555	3325	1615		
	1,73 centre of symm. m, H2C	CH2					221	12950
	3,60 s, cyclopropane-COOCH ₂	ત ્ર	1725; 1735		absence	1515		
ĸ	5,84 s, pyrazole-COCCH2	ام ا	1720; 1738		=	1512		
	-3		(shs. at 1690					
	7,51 d, $J_{4,5}=2,5$ Hz, $C_{5}=1$ H		and 1670)					
	3,08 m centre, C4-2H	ଷା	1725 (sh.	1600	absence	1515	213	12530
	3,80 s, pyrazoline-COOCH2		at 1735)				253	11640
4	5,85 s, pyrazole-COCCH3	ام.	1715	1592	=	1512		
	4,03 m centre, C _c -2H	ä	dioxane:					
	6,73 d, J4151=2,5 Hz, C4-1H		1730; 1750	1600	=	1515		
	7,60 d, J4;5,=2,5 Hz, C;-1H							
	3,95 s, coce <u>H</u> 3	ଷା	1725 (sh.		3170; 3460	Q	217	12020
α	6,85 d, J _{4,5} =2,5 Hz, C ₄ -1H		at 1710)					
22	7,90 d, $J_{4,5} = 2,5 \text{ Hz}$, $G_{5} - 1H$	ام	1740 (shs.at					
	16,00, N-H		1750,1720 and 1690)	1690)	3140			
	2,35 s, CH3CO	ળા	1730 (ester)	1590	absence		280	19700
<u>ტ</u>	3,10 m centre, C4-2H		1680 (amide)					
	3,87 s, COCCH ₃							
	4,05 m centre, C ₅ -2H							

No. 28 2657

(iii) the band of v N-H is absent.

On the basis of the data the following scheme may be proposed as a key step in the mechanism of converting pyrazolines by the action of $Pb(OAs)_4$ which is discussed in literature^{2,3} - namely a nucleophilic attack of the most nucleophilic N_1 -nitrogen atom of $\underline{1}^{15}$ (or of $\underline{5}^{16}$) on the interim 3-acetoxy derivative $\underline{2}$:

In the MMR, IR and UV spectra of $\underline{4}$ there are features typical of both 3(5)-methoxy-carbonyl pyrazole and of 3-methoxycarbonyl Δ^2 -pyrazoline. The presence of a N₁-substituted Δ^2 -pyrazoline fragment in the molecule of $\underline{4}$ is borne out by (i) an intensive absorption band ν C=N at 1600 cm⁻¹ which is typical of such structures¹⁷; (ii) peculiar multiplets of protons at C₄ and C₅ in the NMR spectrum; (iii) an absorption maximum at 252 nm in the UV spectrum. The C₄ and C₅ protons of the pyrazoline fragment are shifted over to a weaker field of 25 and 43Hz respectively, which is similar in the case of the N₁-acetyl derivative $\underline{6}$. According to the IR spectra (weaker absorption band at 1515 cm⁻¹), the most probable structure of the pyrazole fragment must be the N₁-derivative of 3-methoxy-carbonyl pyrazole. It is of interest to note that the IR spectrum of $\underline{5}$ does not show clear absorption bands within the wavelength values of 1500-1680 cm⁻¹, whereas $\underline{1}$ displays an intensive band of ν C=N at 1560 cm⁻¹ which in $\underline{4}$ is shifted to 1600 cm⁻¹ which is similar to the ν C=N band of $\underline{6}$ reaching 1590 cm⁻¹.

The small quantities of $\underline{4}$ produced are in keeping with the fact that in the initial reaction of Pb(OAc) $_4$ with pyrazolines various intermediates are formed^{2,3}.

Acknowledgements: We express out gratitude to Mr. I.I. Ugolev, Mrs. L.P. Suganyak and Mrs. I.P. Stremok for recording of the NMR, IR and UV spectra.

REFERENCES AND NOTES

- 1. Author to whom inquiries may be addressed.
- 2. J.B.Aylword, Quarterly Rev., 25, 407(1971).
- 3. R.N.Butler, Chem. and Ind., London, 1968, 437.
- 4. J.A. Moore, J. Org. Chem., 20, 1607(1955).
- 5. Thin layer chromatography was performed on a silica gel (Woelm) plates, ether being used as eluent, spots being detected by uv light and iodine vapours (Rf: 1 0.30; 2 0.40; 4 0.35; 5 0.32; 6 0.25).
- 6. A satisfactory C,H and N elementary analysis has been obtained for all the substances studied in the present paper.
- 7. The nmr spectra were obtained on a Varian HA 100 spectrometer using ca. 15% solutions in CDCl₃. The ir spectra were taken on a Carl Zeiss (DDR) Model UR-20 specrophotometer. The uv spectra were determined on a Carl Zeiss (DDR) Model "Specord" recording spectrophotometer in abs. MeOH.
- 8. Obtained according to J.Elguero, G.Guiraud, R.Jacquier, <u>Bull.soc.chim</u>. <u>France</u>, <u>1966</u>, 619; m.p. 139-140°C from benzene.
- 9. Obtained from 1 acted on by AcoO in AcoH, m.p. 101-103°C from CoH5OH.
- 10. H.M. Hutton, T. Schaeffer, Can. J. Chem., 41, 2429(1963).
- 11. M.M.E.Arnal, A.A.Pavia, J.Wylde, Bull.soc.chim.France, 1964, 460.
- 12, J. Elguero, R. Jacquier, H.C. N. Tien Duc, Bull, soc, chim, France, 1966, 3727,
- 13, J. Elguero, R. Jacquier, H. C. N. Tien Duc, Bull. soc. chim. France, 1966, 3744.
- 14. G.Zerby, C.Alberti, Spectrochim Acta, 1963, 1261.
- 15. A.N.Kost, I.I.Grandberg in <u>Advances in Heterocyclic Chem.</u>, Ed.by A.R.Kat-ritzky, Academic Press, New York, London, 1966, vol.6, p. 389; K.von Auwers, P.Heimke, <u>Liebig's Annalen für Chemie</u>, <u>458</u>, 186(1927); K.von Auwers, Ch.Mansolf, <u>Ber.deutsch.chem.Ges.</u>, <u>60</u>, 1730(1927).
- 16. The attack of N₁-pyrazole 5 appears unlikely as it has not been detected in the reaction products, although this might have been expected, e.g. see: J.P.Freeman, J.Org.Chem., 28, 885(1963).
- 17. R.Wiechert, E.Kaspar, Chem.Ber., 93, 1710(1960).